Computed quantities

Computed quantities#

The following tables list the different quantities computed by the post-processing scripts implemented in VaMPy. In table Table 1 we present the hemodynamic indices computed by the script/command compute_hemodynamic_indices.py/vampy-hemo.

Table 1 Hemodynamic indices#

Quantity

Abbreviation/Symbol

Definition

Unit

Wall shear stress

WSS, \(\tau\)

\(\displaystyle \mu \frac{\partial u}{\partial n}\)

[Pa]

Time averaged wall shear stress

TAWSS

\(\displaystyle \frac{1}{T}\int_0^T \left| \tau \right| \, d t\)

[Pa]

Temporal wall shear stress gradient

TWSSG

\(\displaystyle \frac{1}{T}\int_0^T \left| \frac{\partial \tau}{\partial t} \right| \,d t\)

[Pa/s]

Oscillatory shear index

OSI

\(\displaystyle \frac{1}{2}\left(1- \frac{\left| \int_0^T \tau \,d t \right|}{\int_0^T \left| \tau \right|\,d t} \right)\)

[ - ]

Relative residence time

RRT

\(\displaystyle \frac{1}{(1-2\cdot \text{OSI})\cdot \text{TAWSS}}\)

[1/Pa]

Endothelial cell activation potential

ECAP

\(\displaystyle \frac{\text{OSI}}{\text{TAWSS}}\)

[1/Pa]

In table Table 2 we present the fluid mechanical metrics and simulation quantities that are computed by the script/command compute_flow_and_simulation_metrics.py/vampy-metrics.

Table 2 Flow and simulation metrics#

Quantity

Abbreviation/Symbol

Definition

Unit

Velocity

\(u\)

\(\displaystyle u(x,y,z,t) = (u_x, u_y, u_z)\)

[m/s]

Mean velocity

\(\bar{u}, u_{\text{mean}}\)

\(\displaystyle \frac{1}{T} \int_0^T u \,dt\)

[m/s]

Turbulent velocity

\(u'\)

\(\displaystyle u - \bar{u}\)

[m/s]

Kinematic viscosity

\(\nu\)

\(\displaystyle \frac{\mu}{\rho}\)

[m\(^2\)/s]

Time interval

\(T\)

\(\textit{User defined}\)

[s]

Time step

\(\Delta t\)

\(\displaystyle \frac{T }{ N}\)

[s]

Characteristic edge length

\(\Delta x, h\)

\(\displaystyle \texttt{CellDiameter(mesh)}\)

[m]

Courant–Friedrichs–Lewy condition

CFL

\(\displaystyle |u|\frac{\Delta t}{\Delta x}\)

[ - ]

Rate of strain

\(S_{ij}\)

\(\displaystyle \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \)

[1/s]

Turbulent rate of strain

\(s_{ij}\)

\(\displaystyle \frac{1}{2} \left(\frac{\partial u'_i}{\partial x_j} + \frac{\partial u'_j}{\partial x_i} \right) \)

[1/s]

Absolute rate of strain

Strain

\(\displaystyle \sqrt{\langle S_{ij}, S_{ij}} \rangle \)

[1/s]

Dissipation

\(\mathcal{E} \)

\(\displaystyle 2\nu \langle S_{ij}, S_{ij} \rangle \)

[m\(^2\)/s\(^3\)]

Turbulent dissipation

\(\varepsilon \)

\(\displaystyle 2\nu \langle s_{ij}, s_{ij} \rangle \)

[m\(^2\)/s\(^3\)]

Kinetic energy

KE, \(E_k\)

\(\displaystyle \frac{1}{2} \left( u_x^2 + u_y^2 + u_z^2 \right)\)

[m\(^2\)/s\(^2\)]

Turbulent kinetic energy

TKE, \(k\)

\(\displaystyle \frac{1}{2} \left( (u'_x)^2 + (u'_y)^2 + (u'_z)^2 \right)\)

[m\(^2\)/s\(^2\)]

Friction velocity

\(u^{\star},u_\tau\)

\(\displaystyle \sqrt{\nu S_{ij}}\)

[m/s]

Generalized length scale

\(\ell^+\)

\(\displaystyle \frac{u^\star \Delta x}{\nu}\)

[ - ]

Generalized time scale

\(t^+\)

\(\displaystyle \frac{(u^\star)^2 \Delta t}{\nu}\)

[ - ]

Kolmogorov length scale

\(\eta\)

\(\displaystyle \left( \frac{\nu^3}{\varepsilon} \right)^{\frac{1}{4}} \)

[m]

Kolmogorov time scale

\(\tau_\eta\)

\(\displaystyle \left( \frac{\nu}{\varepsilon} \right)^{\frac{1}{2}} \)

[s]

Kolmogorov velocity scale

\(u_\eta\)

\(\displaystyle \left( \varepsilon \nu \right)^{\frac{1}{4}} \)

[m/s]