# Copyright (c) 2023 David Bruneau
# SPDX-License-Identifier: GPL-3.0-or-later
"""
This script creates a power spectrum plot.
"""
import logging
from pathlib import Path
from typing import Optional, Union
import numpy as np
import matplotlib.pyplot as plt
from vasp.automatedPostprocessing.postprocessing_h5py import spectrograms as spec
from vasp.automatedPostprocessing.postprocessing_common import read_parameters_from_file
[docs]
def create_spectrum(case_name: str, quantity: str, df, start_t: float, end_t: float, num_windows_per_sec: float,
overlap_frac: float, window: str, lowcut: float, min_color: float, max_color: float,
image_folder: Union[str, Path], flow_rate_file: Optional[str] = None,
amplitude_file: Optional[str] = None, power_scaled: bool = False) -> None:
"""
Create a power spectrum plot and save the results as an image and CSV file.
Args:
case_name (str): Name of the case.
quantity (str): Type of data to be processed.
df: Input DataFrame containing relevant data.
start_t (float): Desired start time of the output files.
end_t (float): Desired end time of the output files.
num_windows_per_sec (float): Number of windows per second.
overlap_frac (float): Fraction of overlap between consecutive windows.
window (str): Type of window function to use.
lowcut (float): Cutoff frequency for the high-pass filter.
min_color (float): Minimum value for the color range.
max_color (float): Maximum value for the color range.
image_folder (str or Path): Folder to save the spectrum image and CSV file.
flow_rate_file (str): File name for flow rate data.
amplitude_file (str): File name for amplitude data.
power_scaled (bool): Whether to use power scaling in the PSD calculation.
Returns:
None: Saves the spectrum plot as an image and CSV file.
"""
# Get sampling constants
logging.info("--- Getting sampling constants...")
T, _, fs = spec.get_sampling_constants(df, start_t, end_t)
# PSD calculation
Pxx_array, freq_array = spec.get_psd(df, fs, scaling="spectrum")
# Plot PSD
logging.info("\n--- Plotting PSD...")
plt.plot(freq_array, np.log(Pxx_array))
plt.xlabel('Freq. (Hz)')
plt.ylabel('input units^2/Hz')
logging.info("--- Saving PSD plot and CSV data...")
plot_name = f"{quantity}_psd_no_filter_{case_name}"
path_to_fig = Path(image_folder) / f"{plot_name}.png"
path_csv = Path(image_folder) / f"{plot_name}.csv"
# Save the figure
plt.savefig(path_to_fig)
# Save CSV data
data_csv = np.stack((freq_array, np.log(Pxx_array)), axis=1)
np.savetxt(path_csv, data_csv, header="Freqs(Hz),spectrum", delimiter=",")
logging.info(f"--- PSD plot saved at: {path_to_fig}")
logging.info(f"--- CSV data saved at: {path_csv}")
[docs]
def main():
# Load in case-specific parameters
args = spec.read_command_line_spec()
# Create logger and set log level
logging.basicConfig(level=args.log_level, format="%(message)s")
# Load parameters from default_parameters.json
parameters = read_parameters_from_file(args.folder)
# Extract parameters
fsi_region = parameters["fsi_region"] if args.fsi_region is None else args.fsi_region
fluid_domain_id = parameters["dx_f_id"]
solid_domain_id = parameters["dx_s_id"]
end_time = args.end_time if args.end_time is not None else parameters["T"]
save_deg = args.save_deg if args.save_deg is not None else (1 if args.quantity == 'p' else parameters["save_deg"])
# Create or read in spectrogram dataframe
quantity, df, case_name, image_folder, visualization_hi_pass_folder = \
spec.read_spectrogram_data(args.folder, args.mesh_path, save_deg, args.stride, args.start_time,
end_time, args.n_samples, args.sampling_region,
args.fluid_sampling_domain_id, args.solid_sampling_domain_id, fsi_region,
args.quantity, args.interface_only, args.component, args.point_id, fluid_domain_id,
solid_domain_id, sampling_method=args.sampling_method)
# Should these files be used?
# amplitude_file = Path(visualization_hi_pass_folder) / args.amplitude_file_name
# flow_rate_file = Path(args.folder) / args.flow_rate_file_name
# Create spectrograms
create_spectrum(case_name, quantity, df, args.start_time, end_time, args.num_windows_per_sec,
args.overlap_frac, args.window, args.lowcut, args.min_color, args.max_color, image_folder,
flow_rate_file=None, amplitude_file=None, power_scaled=False)
if args.sampling_method == "SinglePoint":
spec.sonify_point(case_name, quantity, df, args.start_time, args.end_time, args.overlap_frac, args.lowcut,
image_folder)
if __name__ == '__main__':
main()